【ポイント10倍】Luminox Audio LNA Day for Night qdc-2.5mmL■商品内容

「Day fot Night」は広大なサウンドステージと細かいディティールも見渡せる高い解像度を実現。独自特許技術「PairBalancingTechnology」(PB)により、さらなる透明度で音楽を再生します。超高純度OCC(単結晶無酸素銅)線と銀メッキ銅線の組み合わせによる4芯構造の採用により、広帯域にわたり自然でウエルバランスな音質を可能にします。さらにケーブルをツイストする工程をハンドクラフトにて対応することでケーブルの柔軟性も確保しています(ケーブル長:約1.2m)。独自の特許技術であるPBは、信号経路における電子伝送の安定性を最大限に高め、両方の信号線が同じ極性の信号を伝送する「バランスケーブル」と同様の効果が得られ、高S/N伝送を可能にします。さらに、PBはアンバランス信号にも作用し、バランス伝送と同等の音質を3.5mmプラグでも可能にします。信号経路全体で電子と抵抗の両方が均等にならないため、PBは電子伝送の過程でトラフィックを誘導するガイドとして機能します。PBを使用することで、すべてのケーブル素材はオリジナリティーを発揮し、自然かつ原音に近いサウンドクオリティを実現します。プラグには屈曲負荷を軽減するL字タイプを採用。


■商品スペック

アスベスト 非含有
RoHS指令 対象外
J-Moss 対象外
環境自己主張マーク なし
その他環境及び安全規格 なし
電波法備考 該当製品ではない
電気通信事業法備考 公衆回線に接続しない為
電気用品安全法備考 該当製品ではない
電波法 非対象
電気通信事業法 非対象
電気用品安全法 非対象
法規関連確認日 20180830




■送料・配送についての注意事項

●本商品の出荷目安は【1 - 5営業日 ※土日・祝除く】となります。

●お取り寄せ商品のため、稀にご注文入れ違い等により欠品・遅延となる場合がございます。

●本商品は同梱区分【TS1】です。同梱区分が【TS1】と記載されていない他商品と同時に購入された場合、梱包や配送が分かれます。

●沖縄、離島および一部地域への配送時に追加送料がかかる場合や、配送ができない場合がございます。

◆ 回 転 移 相 式 渦 流 探 傷 に 関 す る 説 明
回 転 移 相 式 渦 流 探 傷
渦流試験の原理
#description【ポイント10倍】Luminox Audio LNA Day for Night qdc-2.5mmL:サイバーベイ - 81439
回転移相の原理

回 転 移 相 の 効 果
keywords#

2019-08-14
カテゴリトップ>その他
2.#description
図 3 図 4

図3は一般的に使用されているホイストンブリッジの渦電流式欠陥検出用ブリッジ回路です。
出力条件  平衡時(出力ゼロ)  L1:R2=L2:R1
欠陥検出出力時  |L1-L2| になります。
図4は、図3の検出部(コイル)を示したもので、貫通型の欠陥検出を示します。上記図3及び図4の様に接続することによって欠陥出力が可能です。
検出される出力は、交流電源(AC)を使用しているため電流変化と位相変化が現れます。又、検出部にコイルを使用しているために変化量はインピーダンスの変化によって、変化した電流変化値と位相変化値となって現れます。
図 5 図 6

図5は、貫通型検出コイル中に非磁性金属片Cを挿入して時の図であり、検出コイルに一定交流電源を接続して交流を流した時に発生するベクトル図を図6に示します。
検出コイルは、一般にRとL(インダクタンス)との合成で成り立っています。
図5の金属片Cの良部BをL o中におかれているとき図6のZ1でθ1の位相角度になりあます。又、金属片Cを移動し、L o中に疵部Aをおいた時、図6のZ2でθ2に変化します。
この時、良部と疵部の位相変化量は、
|θ2-θ1|=θ3となり条件(金属材質、寸法、コイルインピーダンスR・ωL、交流周波数)を変えない限りこの値は一定となります。
従って、一般的な渦流探傷方法では、一定条件での欠陥検出の位相角変化は理論上不可能です。
今回、開発した渦流探傷器は、上記一定条件において、疵の位相角度を任意に可変出来る装置です。
(国際特許)
(欠陥検出装置のベクトル表示)
図 7

3.回転移相の原理
流探傷器は、従来の渦流探傷器で使用されているコイルインピーダンスのベクトル変化量(図7左図の位相変化量θ3)での検出のみでなく、検出コイル内での磁束の変化も検出し、制御コイルによりコイル内部の磁束が一定となるように磁束を制御しています。
検出コイル内に金属材料が挿入されますと、コイル内のガタ信号(ノイズ信号)によりコイルインピーダンスは変化します。
この時、金属表面に疵が発生していますとコイルインピーダンスのベクトル量と、磁束の変化量も変わり制御コイルからの信号と検出コイルからの信号により欠陥の検出が可能となります。
この制御コイルからの、制御信号の位相を変化させることで、通常分離が出来にくかった疵信号とガタ信号(ノイズ信号)の位相差を任意に変化(図7右図)させることができます。
回転移相型コイルは、図8の構成となっています。
図 8

従来の渦流探傷器では、L1とL2の検出回路で構成されており、|L1-L2|のベクトル変化量
(図7左図のθ3)の情報でしかないので条件を変えない限りこの位相差は一定となり、このままではSN比は向上しません。
図 9

図9のコイル空心時の磁束本数をφa(この値は一定)とします。そのコイルに金属材料を挿入しますと、金属材
料の磁束本数がφbとなり内部空間磁束と金属材料内磁束の関係は、φa-φb:φbとなります。
この状態で疵部にきますと金属材料の体積が減るため金属材料内の磁束本数が減り金属材料内の磁束本数はφb-⊿φとなります。又、この⊿φが疵信号とガタ信号の位相差に相当します。
従って、この⊿φの値を変化させることで疵信号とガタ信号の位相差を任意に変化させることができます。これが回転移相の原理です。 又、磁束と電流の間には、φ=I/Tの関係から、電流Iを変化させれば磁束が変化します。又、図10のベクトル図において、RとVは同相であり、又、ωLとIが同相であることから電流Iを変化させることで疵信号とガタ信号の位相差θ3が変化します。
図 10

◆ 回 転 移 相 の 効 果
keywords#
SUS304、φ10㎜、深さ50μm
従来方式 回転移相方式


磁性材、コーナー部クラック疵、深さ20μm、長さ0.2㎜
従来方式 回転移相方式



Copyright (C) Nihon Estekku Co.,Ltd. All Rights Reserved.